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A general finite-difference marching scheme for the numerical solution of the
ice-thickness equation in ice sheets is considered. From this scheme, a variety of
explicit, ADI, implicit and over-implicit methods can be derived. These methods are
compared for stability and accuracy within the dynamic/thermodynamic ice-sheet
model SICOPOLIS for two different problems: (i) a simple axi-symmetric steady-
state ice sheet which rests on a flat bedrock, and (ii) the time-dependent paleo-
glaciation of the northern hemisphere. As expected, over-implicit methods turn out
to be most stable. For the simple problem, all schemes provide a good accuracy,
whereas for the northern hemisphere simulations, the accuracy of the over-implicit
scheme is not satisfactory, so that the implicit technique without over-weighing
appears favorable for this application. c© 2002 Elsevier Science (USA)

Key Words: finite-difference methods; applications to physics; Stokes and related
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1. INTRODUCTION

Ice sheets are extended ice masses which rest on solid land and have been formed by ac-
cumulated snowfall over thousands of years. At present, two large ice sheets exist on Earth,
the Antarctic and the Greenland ice sheets, which store about 90% of the entire available
freshwater. In case of total disintegration, global sea level would rise by approximately
70 meters. In the past, the Earth experienced periods with a much more pronounced glacia-
tion. Twenty one thousand years ago, at the Last Glacial Maximum, ice sheets covered also
large parts of North America, the European Alps, the northern part of Europe and perhaps
Siberia and Tibet, and consequently the sea level was ca. 130 meters lower than today [5].

On time scales of centuries and more, ice sheets represent an important dynamic part of
the climate system. This is so because ice flows under its own weight, so that a balance

649

0021-9991/02 $35.00
c© 2002 Elsevier Science (USA)

All rights reserved.



650 GREVE AND CALOV

FIG. 1. Flowing ice sheet with attached, floating ice shelf, and its interaction with the atmosphere, the ocean
and the lithosphere due to topography, snowfall, melting, calving, and geothermal heat flux.

between snowfall (accumulation) in the interior, melting (ablation) and calving close to
the margin, and ice flow from the interior toward the margin occurs. Due to the strong
dependence of ice viscosity on temperature, thermodynamic effects come further into play.
The situation is illustrated in Fig. 1.

Several models have been developed to simulate different aspects of ice-sheet dynam-
ics like present states of Antarctica, Greenland and smaller ice caps, reconstructions of
paleo-glaciation and retreat scenarios under increasing greenhouse-gas concentrations in
the atmosphere (for an overview of relevant literature, see [2, 3, 14, 18]). Typically, in such
models, the central evolution equation is the one for the ice thickness, which describes the
changes of the ice thickness and extent over time. In this paper, after outlining the underlying
continuum-mechanical and thermodynamical theory and numerical solution strategy of the
ice-sheet model SICOPOLIS (Section 2), a general finite-difference marching scheme for
the ice-thickness equation is considered, from which several explicit and implicit methods
can be derived, including the over-implicit scheme recently proposed by Hindmarsh [10].
This scheme was proven to be unconditionally stable for the special case of an isothermal
ice sheet under certain conditions (Section 3). These methods will be compared for stability
and accuracy within the model SICOPOLIS for a simple, “academic” steady-state problem
(Section 4) as well as for time-dependent paleoclimatic simulations of northern-hemisphere
glaciation (Section 5). The main findings are summarized in the conclusions (Section 6).

2. DYNAMIC/THERMODYNAMIC ICE-SHEET MODEL

The mathematical model used here in order to describe the dynamics and thermodynamics
of ice sheets is that described by Greve [6, 7]. It is based on the continuum-mechanical
balance equations and jump conditions of mass, momentum and energy, and the rheology of
a density-preserving, heat-conducting power-law fluid with a rate factor strongly dependent
on the temperature T and the water content ω,

D = E A(T ′, ω) f (σ ) tD, (1)
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where D is the strain-rate tensor; tD the stress deviator; E the creep enhancement factor;
A(T ′, ω) the creep rate factor, dependent on the homologous temperature T ′ = T − Tm

(Tm: pressure melting point) and the water content ω (the latter holds only in temperate ice,
that is, at pressure melting T ′ = 0◦C); f (σ ) the creep function, dependent on the effective
shear stress σ = [tr(tD)2/2]1/2. For the creep function, we apply the widely used power-law

f (σ ) = σ n−1, with power-law exponent n = 3, (2)

which is known as Glen’s flow law (e.g., [17]).
The model equations, which shall not be repeated here except for the ice-thickness

equation that is the subject of this study, are subjected to the shallow ice approximation
[12, 16]; that is, they are scaled with respect to the aspect ratio ε ∼ 10−2 . . . 10−3 (ratio
of typical thickness to typical horizontal extent), and only lowest-order terms are kept.
This entails neglection of acceleration in the momentum balance, so that the velocity field
behaves quasi-stationary (“Stokes flow”) and, furthermore, neglection of deviatoric normal
stresses.

The evolution equation for the ice thickness is based on the incompressibility condition

∇ · v = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
= 0, (3)

where x , y are the horizontal Cartesian coordinates, z is the vertical Cartesian coordinate
(elevation above present sea level), and v = (vx , vy, vz) the three-dimensional ice-velocity
vector. Integration of (3) from the ice surface, z = h(x, y, t), to the ice base, z = b(x, y, t),
and application of kinematic boundary conditions at the surface and the base yields

∂h

∂t
= −∂qx

∂x
− ∂qy

∂y
+ as − ab + ∂b

∂t
, (4)

where t is the time,

q = (qx , qy) =
∫ h

b
(vx , vy) dz (5)

the horizontal mass flux, as(x, y, t) the accumulation-ablation function at the ice surface
(accumulation, a+

s , minus ablation, a−
s ) and ab(x, y, t) the basal melting rate. In the shallow-

ice approximation, the horizontal mass flux can be expressed as

(qx , qy) = −Dh

(
∂h

∂x
,

∂h

∂y

)
, (6)

with the diffusivity

Dh = ρgH 2C(T ′, . . .) + 2ρg
∫ h

b
E A(T ′, ω) f (σ ) (h − z)2 dz

= ρgH 2C(T ′, . . .) + 2(ρg)n

((
∂h

∂x

)2

+
(

∂h

∂y

)2) n−1
2

∫ h

b
E A(T ′, ω)(h − z)n+1 dz,

(7)



652 GREVE AND CALOV

where ρ is the ice density, g the gravity acceleration, and H = h − b the ice thickness (e.g.,
[13]; the second form follows from the first by applying Eq. (2)). C(T ′, . . .) denotes the
coefficient in the Weertman-type basal-sliding law

(
vb

x , vb
y

) = C(T ′, . . .)
(
τ b

xz, τ
b
yz

)
, (8)

which relates the velocity at the ice base, (vb
x , vb

y), to the basal shear stress (τ b
xz, τ b

yz).
C(T ′, . . .) depends on the homologous temperature, T ′, and perhaps other quantities such
as the pressure and the absolute value of the basal shear stress.

Insertion of (6) into (4) yields the evolution equation for the ice thickness H = h − b,

∂h

∂t
= ∂

∂x

(
Dh

∂h

∂x

)
+ ∂

∂y

(
Dh

∂h

∂y

)
+ as − ab + ∂b

∂t
, (9)

(which is actually an evolution equation for the free surface, h, but in agreement with the
common terminology referred to as “ice-thickness equation”). Note that, according to (7),
Dh depends itself on h, so that (9) is a nonlinear partial differential equation of parabolic
type.

To solve the complete set of model equations, the numerical model SICOPOLIS (Sim-
ulation Code for Polythermal Ice Sheets) was developed. It is based on a finite-difference
approach with discretizations

xi = x0 + i�x, i = 0 (1) imax, (10)

y j = y0 + j�y, j = 0 (1) jmax, (11)

tn = t0 + n�t, n = 0 (1) nmax (12)

[the notation a (b) c means “from a to c in steps of b”]. In the vertical direction (coordinate
z), columns of cold ice, temperate ice and lithosphere are mapped separately on intervals ζ =
0 . . . 1 (“σ -transformation”), and the coordinates ζ are discretized in a fashion analogous

FIG. 2. Arakawa-C-grid applied in the ice-sheet model SICOPOLIS. Velocity components vx , vy , vz are
defined in between grid points, other variables � (temperature, water content, positions of free surface and
bedrock, etc.) are defined on grid points.
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FIG. 3. Scheme of the polythermal ice-sheet model SICOPOLIS. The rectangular boxes correspond to prog-
nostic model components, the oval boxes to input quantities.

to (10)–(12). Variables are distributed on the numerical grid according to the Arakawa-C-
scheme [1], which means that velocity components vx , vy , and vz are defined in between
grid points, whereas the ice surface h and other variables are taken on grid points (Fig. 2).
Arakawa and Lamb [1] reported that this scheme is best suited for simulating the geostrophic
adjustment for the shallow-water equations, a problem very similar to the flow of ice sheets.
For that reason, the Arakawa-C-grid is used in most of the current ice-sheet models based
on finite differences.

Two different time steps apply, a smaller one, �t , for the solution of the ice-thickness
equation (9), together with the evolution equation for the bedrock position b, and a larger
one, �̃t , for the thermodynamic evolution equations (temperature in cold ice, water content
in temperate ice, age). It is required that �̃t is an integer multiple of �t .

The model computes three-dimensionally the temporal evolution of ice extent, thickness,
isostatic lithosphere displacement, ice velocity (purely diagnostic equation), temperature,
water content, and age as a response to external forcing. The latter must be specified by (i)
the mean annual air temperature above the ice, (ii) the surface mass balance, which is ice
accumulation (snowfall) minus ablation (melting), (iii) the eustatic sea level, and (iv) the
geothermal heat flux, imposed 5 km below the ice-bedrock interface in order to account for
thermal inertia effects of the lithosphere. The model is sketched schematically in Fig. 3.
For further details, see Greve [6, 8].

3. NUMERICAL SOLUTION OF THE ICE-THICKNESS EQUATION

Let us now turn to the numerical solution of the diffusive ice-thickness equation (9). We
define the forward-time operator

(δt h)n
i, j = hn+1

i, j − hn
i, j

�t
(13)
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and the central-space operators

(
δ2

x h
)n(+1)

i, j
= 1

�x2

(
(Dh)

n
i+ 1

2 , j

(
hn(+1)

i+1, j − hn(+1)
i, j

) − (Dh)
n
i− 1

2 , j

(
hn(+1)

i, j − hn(+1)
i−1, j

))
, (14)

(
δ2

yh
)n(+1)

i, j
= 1

�y2

(
(Dh)

n
i, j+ 1

2

(
hn(+1)

i, j+1 − hn(+1)
i, j

) − (Dh)
n
i, j− 1

2

(
hn(+1)

i, j − hn(+1)
i, j−1

))
(15)

(due to the spatially varying diffusivity Dh, this is not simply the discretization of second
spatial derivatives of h), in which the diffusivities are always taken at the old time level tn ,
and are evaluated as

(Dh)
n
i± 1

2 , j = 1

2

(
(Dh)

n
i, j + (Dh)

n
i±1, j

)
, (16)

(Dh)
n
i, j± 1

2
= 1

2

(
(Dh)

n
i, j + (Dh)

n
i, j±1

)
. (17)

Equations (16) and (17) correspond to the “Type II” method described by Huybrechts
et al. [14], which is characterized by favorable stability properties. A finite-difference
marching scheme of the general form

(δt h)n
i, j = wx

(
δ2

x h
)n+1

i, j
+ (1 − wx )

(
δ2

x h
)n

i, j
+ wy

(
δ2

yh
)n+1

i, j
+ (1 − wy)

(
δ2

yh
)n

i, j

+ (as)
n
i, j − (ab)

n
i, j +

(
∂b

∂t

)n

i, j

(18)

is considered, which holds for i = 1 (1) imax − 1, j = 1 (1) jmax − 1, n = 0 (1) nmax − 1.
For the initial time level n = 0 and the boundaries i = 0, imax and j = 0, jmax, the surface
elevations hn

i, j are prescribed.
For wx = wy =: w = 0 the scheme (18) is explicit (EXPL), and an alternating choice

wx = 0, wy = 1 in one iteration step and wx = 1, wy = 0 in the next yields an alternating-
direction implicit scheme (ADI). Most of the current ice-sheet models (see [14, 18]) use
one of these two easy-to-implement and well-tried methods. For wx = wy =: w = 1, the
scheme becomes implicit (IMPL), for wx = wy =: w = 1/2 it is of Crank–Nicholson type
(will not be discussed further). Hindmarsh [10] proposed an over-implicit scheme (OVI)
with wx = wy =: w > 1, and proved its unconditional stability in case of an isothermal ice
sheet for w ≥ n/2. We will also consider a combination of ADI and OVI, that is, wx =
0, wy =: w > 1 in one iteration step and wx =: w > 1, wy = 0 in the next (alternating-
direction over-implicit, ADOVI). All schemes are implemented as options in the latest
version of SICOPOLIS.

In case of the explicit scheme, (18) can be solved directly for the unknowns hn+1
i, j . In

all other cases, systems of linear equations (SLEs) arise from (18). For the moment, let us
assume a quadratic horizontal domain with imax = jmax = 100. Then, for ADI and ADOVI,
in each time step 101 tridiagonal SLEs with 101 unknowns each must be solved, which
can easily and efficiently be done by Gaussian elimination for tridiagonal matrices. By
contrast, the implicit and OVI schemes lead to one SLE with 1012 = 10,201 unknowns,
which corresponds to a matrix with 10,2012 = 104,060,401 entries, most of which are
equal to zero (“sparse matrix”). Here, great care must be taken to apply a computationally
manageable and efficient solution technique.
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In SICOPOLIS, the matrix is stored in row-indexed sparse storage mode, which requires
storage of only about twice the number of nonzero elements [19]. The SLE is then solved
with the successive over-relaxation method (SOR, e.g., Törnig and Spellucci [20]), an
iterative scheme which does not affect the matrix elements themselves, but is based on
matrix-vector multiplications for which the row-indexed sparse storage mode is optimized.
Therefore, the SOR method works very fast and efficiently for our problem. The convergence
criterion is chosen as

max
{(

hn+1
i, j

)
s+1 − (

hn+1
i, j

)
s

}
i=0 (1) imax
j=0 (1) jmax

< εSOR, εSOR = 10−5 a+
s �t, (19)

where the index s counts the SOR iterations for the unknowns hn+1
i, j , and a+

s is the spatial
mean of the present accumulation rate of the simulated ice sheet. Due to the nonsymmetric
matrix, stability is not guaranteed for over-relaxation parameters ωSOR > 1, so that we use
ωSOR = 1 (also known as “Gauss–Seidel scheme”).

In principle, it is also possible to evaluate the diffusivities Dh in (18) at the new time
level tn+1, which leads to a nonlinear algebraic equation for the unknowns hn+1

i, j . This is
not pursued here, but was discussed by Hindmarsh and Payne [11] for the purely dynamic
problem (isothermal conditions).

4. SIMULATIONS FOR THE EISMINT PHASE 2 SIMPLIFIED GEOMETRY

4.1. Set-up

Within the European Ice Sheet Modelling Initiative (EISMINT), a program funded by
the European Science Foundation (ESF), intercomparisons of thermomechanical ice-sheet
models operated by research groups all over the world were carried out. One of these inter-
comparison studies were the EISMINT phase 2 simplified geometry experiments reported
by Payne et al. [18]. The model domain of these experiments is a flat square bedrock of
size 1500 × 1500 km2. Axisymmetric boundary conditions with respect to the center of the
square are prescribed for snowfall, surface melting, and surface temperature, which mimic
roughly the conditions for the present Greenland ice sheet. Here, only “Experiment A” will
be considered, which is a simulation into steady state over 200 kyr with time-independent
boundary conditions, starting from ice-free initial conditions (for details, see [18]). Basal
sliding is not accounted for, so that only internal deformation contributes to the ice flow,
and the bedrock position is held fixed (no isostasy). For the horizontal plane, we apply two
different grid spacings, the original fine grid with �x = �y = 25 km (61 × 61 grid points),
and a coarse grid with �x = �y = 75 km (21 × 21 grid points). The vertical direction is
discretized by 51 grid points in the cold-ice layer, 11 grid points in the temperate-ice layer
(if existing; only relevant for the polythermal mode; see below), and 11 grid points in the
lithosphere.

Unless stated otherwise, the simulations discussed below have been carried out in the
“cold-ice mode.” This means that the transition surface which separates cold and temperate
ice is not monitored physically adequately by fulfilling Stefan-type conditions (Greve [6, 7])
and that the water-content equation is not solved in temperate-ice regions (conducting this
is referred to as “polythermal mode”). Instead, the temperature equation is solved for the
whole ice sheet, and temperatures exceeding pressure melting are artificially reset. This is
done in order to achieve better comparability with other current ice-sheet models, which use
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only the cold-ice mode. However, the performance of the model in the polythermal mode
will also be reported briefly.

4.2. Stability and Accuracy

To assess the stability performance of the various marching schemes for the ice-thickness
equation defined in Section 3, the maximum time steps �t , �̃t are determined for which
stable integration of Experiment A can be achieved (only values m × 10p yr with m ∈
{1, 2, 5} and integer p tested). The results for EXPL, ADI, ADOVI (w = 3), IMPL, OVI
(w = 1.5), and OVI (w = 3) are given in Table I together with corresponding CPU times on
a PII 400 MHz LINUX PC (compilation with the NAGWare Fortran 95 compiler Release
4.1, optimization level O2).

Evidently, for the 25-km grid, the dynamic time step �t varies by a factor 40 between the
least stable scheme EXPL and the most stable schemes OVI (w = 1.5, w = 3), whereas the
thermodynamic time step �̃t is not affected. The variation in �t is reflected in CPU times
ranging from ca. three and a half hours (EXPL) to one-fourth hour (OVI, w = 1.5, w = 3).
The stabilizing effect of over-weighing the implicit contribution in OVI and ADOVI is
clearly visible. �t can be increased by a factor of 4 in OVI (w = 1.5, w = 3) compared
to IMPL, and still by a factor of 2 in ADOVI (w = 3) compared to ADI. However, uncon-
ditional stability, which was proven by Hindmarsh [10] for OVI with w ≥ n/2 (=1.5) and
isothermal conditions, does not hold in our thermomechanically coupled situation.

By contrast, for the coarse 75-km grid, all schemes except EXPL can be run with the
same time steps. Apparently, in this case the limiting factor for stability arises from the
thermodynamic model components, of which the numerical solution has been left unchanged
in our study.

The accuracy of the results is assessed by comparison with a reference run conducted with
the 25-km grid, the most natural scheme EXPL and the very small time steps �t = 1 yr,
�̃t = 10 yr. This reference run yields an ice sheet with volume Vref = 2.079 × 106 km3,
basal area Aref = 1.031 × 106 km2, maximum thickness Href = 3.655 km, and melt frac-
tion (ratio of basal area at pressure melting to total basal area) fref = 0.699. The predicted
surface-elevation and ice-thickness distributions (identical due to the flat bedrock) are dis-
played in Fig. 4, and Fig. 5 shows the velocity and temperature fields in a transect across
the center. The expected ice flow toward the margin, driven by the surface gradient, comes
out very nicely, and the typical densification of temperature contours close to the base due
to advective transport of cold ice downward is clearly visible as well.

Let V , A, H , and f be the corresponding results of an arbitrary simulation, then relative
errors are defined as

rV = V − Vref

Vref
, rA = A − Aref

Aref
, rH = H − Href

Href
, r f = f − fref

fref
. (20)

These errors are listed in Table I for EXPL, ADI, ADOVI (w = 3), IMPL, OVI (w = 1.5),
and OVI (w = 3). For the 25-km grid, the volume and maximum-thickness errors, rV and rH ,
show a slight tendency to increase with increasing time step �t for the different schemes. In
contrast, the basal area is computed without any error for all schemes. This is so because it is
determined mainly by the surface mass balance (snowfall, melting), the parameterization of
which does not depend on the numerical scheme, and only to a lesser extent by the internal
dynamics. The error of the melt fraction r f , which is dominated by thermodynamic effects,
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TABLE I

Stability Performance (Maximum Time Steps ∆t, ∆̃t), CPU Time (on a PII 400 MHz LINUX

PC), and Accuracy (Relative Errors rV , rA, rH, rf )

Scheme Max. �t/�̃t [yr] CPU time [min] rV [%] rA [%] rH [%] r f [%]

Grid spacing 25 km:
EXPL 5/200 215.6 −1.67 0 −0.67 −2.08
ADI 10/200 123.0 −1.68 0 −0.67 −1.74
ADOVI (w = 3) 20/200 65.9 −1.72 0 −0.68 −0.69
IMPL 50/200 32.8 −1.75 0 −0.68 −1.39
OVI (w = 1.5) 200/200 14.4 −2.05 0 −0.72 −2.61
OVI (w = 3) 200/200 15.3 −2.34 0 −0.77 −1.91

Grid spacing 75 km:
EXPL 50/200 3.33 −6.77 −3.40 −1.90 0.29
ADI 200/200 1.47 −7.17 −3.40 −2.13 6.76
ADOVI (w = 3) 200/200 1.51 −7.61 −3.40 −2.23 3.52
IMPL 200/200 1.53 −7.38 −3.40 −2.12 4.32
OVI (w = 1.5) 200/200 1.56 −7.81 −3.40 −2.69 3.52
OVI (w = 3) 200/200 1.54 −8.38 −3.40 −2.82 3.52

Note. Different solution schemes of the ice-thickness equation for the steady-state EISMINT phase 2 simplified
geometry simulations according to (18) are compared.

FIG. 4. Surface elevation and ice thickness (identical due to the flat bedrock) of the EISMINT phase 2
simplified geometry reference run. Labels in km, contour spacing 200 m.
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FIG. 5. Transect across the center of the ice sheet of the EISMINT phase 2 simplified geometry reference
run. (a) flow velocity, (b) homologous temperature (temperature relative to pressure melting; labels in ◦C, contour
spacing 5◦C).

is apparently not correlated to �t . All occurring errors are less than 3% and therefore small.
Hence, all tested schemes produce reasonably accurate results for the simple, academic
set-up considered here, so that the stability limits of the fastest schemes OVI (w = 1.5,
w = 3) can be fully made use of.

For the 75-km grid, all errors are naturally larger. The volume and maximum-thickness
errors, rV and rH , show again a slight increase from EXPL to OVI (w = 3). As the time steps
�t are the same for all schemes except EXPL, this increase cannot be attributed to increasing
time steps, but is an intrinsic consequence of the schemes themselves. In particular, it can be
clearly seen that over-weighing the implicit contributions in OVI and ADOVI decreases the
accuracy of the computed ice volumes and maximum thicknesses compared to IMPL and
ADI. Like for the 25-km grid, the results for the basal area are unaffected by the different
schemes, and the errors of the melt fraction do not show a clear trend.

The simulation with the 25-km grid and OVI (w = 3) has been re-run in the polythermal
mode. This does not affect the maximum time steps; �t = 200 years, �̃t = 200 years
still gives a stable integration. Nevertheless, the CPU time rises to 41.7 min, almost three
times as much as in the cold-ice mode (Table I). This is mainly due to the fact that the
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transition surface between cold and temperate ice is determined iteratively by a trial-and-
error procedure, which requires several recomputations of the temperature and water content
during a single iteration step [6, 8]. The results for V , A, H , and f are within 2% of
those obtained in the cold-ice mode. However, the computed volumes of the near-basal
temperate-ice layer differ strongly, they are 1.669 × 104 km3 in the polythermal mode and
6.728 × 104 km3 in the cold-ice mode. This tendency of the cold-ice mode to overestimate
temperate-ice volumes was already reported and discussed by Greve [8]. Nonetheless, the
emphasis of our study is on the cold-ice mode, because most of the other current ice-sheet
models operate in this mode only.

5. SIMULATIONS FOR THE NORTHERN HEMISPHERE

5.1. Set-up

As an application of the ice-sheet model SICOPOLIS to a real problem, now paleoclimatic
simulations for the entire northern hemisphere prone to glaciation (North America, Eurasia,
Greenland, Tibet, Alps) are discussed. The set-up follows closely the one described by Greve
et al. [9], so only the most important points are repeated here.

The surface of the northern hemisphere is projected to a polar stereographic map with
standard parallel at 71◦N. In the stereographic plane, the model domain is a 12480 ×
12480 km2 square centered at the north pole. This domain includes the whole area north of
40◦N and extends beyond 30◦N in the Tibet/Himalaya region. The distortion which arises
from the projection is accounted for by introducing the corresponding components of the
(orthogonal) metric tensor in all terms with horizontal derivatives in the model equations.
Two different grid spacings are applied for the stereographic plane, a fine grid with �x =
�y = 80 km (157 × 157 grid points), and a coarse grid with �x = �y = 160 km (79 ×
79 grid points). In the vertical, 21 grid points are used in the cold-ice layer, 11 grid points
in the temperate-ice layer (only polythermal mode), and 11 grid points in the lithosphere.
Again, if not stated otherwise, the simpler cold-ice mode is applied for comparability.

The simulations cover the period from 250 kyr BP (before present) until today, that
is, they run over two glacial/interglacial cycles. Present snowfall and surface-temperature
distributions are derived from data by Jaeger [15] and ECMWF (European Centre for
Medium-Range Weather Forecast, Reading, U.K., www.ecmwf.int), respectively. For past
times, the 250-kyr δ18O record of the GRIP ice core (Fig. 6; Dansgaard et al. [4]), which

FIG. 6. δ18O record of the GRIP ice core [4]. The dashed line indicates the present level. More positive values
correspond to warmer and moister (more precipitation) conditions, more negative values to colder and drier (less
precipitation) ones.
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is a proxy for the surface-temperature and snowfall history in central Greenland, is used
to offset these distributions without changing their spatial pattern. The latter procedure
is only a coarse approximation to real conditions, as changes in atmospheric and oceanic
circulations are likely to influence the spatial distributions of these climatic input quantities.
Surface melting is parameterized by a simple degree-day approach. The simulations start
from arbitrarily chosen ice-free conditions at 250 kyr BP, so that the first ca. 50 kyr of model
time are required for spin-up, until the influence of the initial conditions has faded.

In contrast to the EISMINT simulations of Section 4, isostatic bedrock displacement is
included, and basal sliding appears in regions where the temperature of the basal ice is at
pressure melting. These processes are closer to reality, and at the same time represent an
additional challenge to the stability of the numerical schemes.

5.2. Stability and Accuracy

The same investigation on stability as described above (Section 4.2) for the EISMINT
simulations has been carried out for the paleoclimatic northern hemisphere simulations.
The maximum time-steps and CPU times for the schemes EXPL, ADI, ADOVI (w = 3),
IMPL, OVI (w = 1.5), and OVI (w = 3) are listed in Table II.

Again, for the fine grid (spacing 80 km), the dynamic time step �t increases greatly
(by a factor of 20) from EXPL to OVI, whereas the thermodynamic time step �̃t remains
constant. It is remarkable that IMPL is stable with the same time steps as OVI (w = 1.5,
w = 3) and even needs less CPU time. The latter is due to the fact that IMPL requires
fewer iterations for fulfilling the convergence criterion (19) of the SOR solver. By contrast,
ADOVI (w = 3) allows a twice as large �t than ADI, which is the same stabilising effect
as in the EISMINT simulations.

TABLE II

Stability Performance (Maximum Time Steps ∆t, ∆̃t), CPU Time (on a PII 400 MHz LINUX

PC), and Accuracy (Relative Errors rV , rA, rH, rf ) at the Last Glacial Maximum, t = 18 kyr BP

Scheme Max. �t/�̃t [yr] CPU time [hr] rV [%] rA [%] rH [%] r f [%]

Grid spacing 80 km:
EXPL 5/100 18.34 −0.16 0.23 −0.20 1.70
ADI 10/100 10.35 −0.27 0.09 −0.22 1.15
ADOVI (w = 3) 20/100 5.35 −0.77 −0.25 −0.36 0.05
IMPL 100/100 1.77 −1.86 −1.33 −0.33 −3.15
OVI (w = 1.5) 100/100 1.88 −4.91 −3.05 −0.50 −8.33
OVI (w = 3) 100/100 2.11 −7.06 −4.36 −0.76 −12.11

Grid spacing 160 km:
EXPL 10/100 2.76 −4.45 −1.73 −2.05 13.74
ADI 50/200 0.57 −6.55 −3.00 −2.11 12.51
ADOVI (w = 3) 100/200 0.30 −11.86 −6.57 −2.91 2.18
IMPL 200/200 0.20 −10.36 −5.98 −2.62 1.43
OVI (w = 1.5) 200/200 0.20 −11.21 −6.44 −2.55 −2.60
OVI (w = 3) 200/200 0.20 −14.34 −7.83 −2.45 −9.01

Note. Different solution schemes of the ice-thickness equation for the transient northern hemisphere simulations
according to (18) are compared.
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The situation is very similar for the coarse grid (spacing 160 km). The dynamic time step
�t of scheme EXPL is smaller by a factor of 20 than the one of schemes IMPL and OVI
(w = 1.5, w = 3). ADI and ADOVI (w = 3) differ by a factor of 2, whereas IMPL and
OVI (w = 1.5, w = 3) can be run with the same time steps. In contrast to the 80-km grid,
scheme EXPL requires a smaller thermodynamic time step �̃t than the other schemes.

As above (Section 4.2), a run with the fine grid (spacing 80 km), the scheme EXPL,
and the very small time steps �t = 1 year, �̃t = 10 year have been carried out to ob-
tain a reference result against which the results of the several runs can be checked. For
the Last Glacial Maximum (LGM) at t = 18 kyr BP this yields an extended glaciation
with volume V LGM

ref = 66.87 × 106 km3, basal area ALGM
ref = 32.70 × 106 km2, maximum

thickness H LGM
ref = 4.162 km, and melt fraction f LGM

ref = 0.400, which covers large parts
of north America, Greenland, Scandinavia, Eurasia, and Tibet. At present, apart from some
ice remnants in the Russian Arctic and Tibet, only the Greenland ice sheet remains, so
that V present

ref = 5.584 × 106 km3, Apresent
ref = 3.483 × 106 km2, H present

ref = 3.496 km, and
f present
ref = 0.386 (Fig. 7).
The relative errors rV , rA, rH , and r f [Eq. (20)] of the several schemes are given in

Table II for the LGM time-slice where the ice volume takes a maximum. For the 80-km
grid, all errors essentially increase with increasing time step �t for the different schemes.
Compared to the EISMINT simulations, the variability among the schemes is much larger,
and a distinct discontinuity occurs between IMPL and OVI (w = 1.5), even though these
schemes have been run with the same time steps. Evidently, the over-weighing procedure
worsens the accuracy not only due to larger time-steps, but also due to the method itself, as
we have already seen for the EISMINT simulations. OVI (w = 1.5) and OVI (w = 3) show
volume errors of ca. 5 and 7%, respectively, compared to less than 2% for the other schemes,
so that the accuracy of the OVI simulations is severely limited. The best compromise between
stability and accuracy is clearly the simulation with IMPL. For the 160-km grid, the errors
show the same increasing trend from EXPL to OVI (w = 3), but on a generally higher level
due to the lower spatial resolution.

FIG. 7. Surface elevation of the northern-hemisphere reference run at the Last Glacial Maximum (t =
18 kyr BP) and the present. Labels in km above mean present sea level, contour spacing 1 km, latitude circles
spaced by 10◦, longitude lines by 45◦. Dashed heavy lines indicate ice margins.
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TABLE III

CPU Time (on a PII 400 MHz LINUX PC) and Accuracy (Relative Errors rV , rA, rH, rf )

at the Last Glacial Maximum, t = 18 kyr BP

Scheme CPU time [hr] rV [%] rA [%] rH [%] r f [%]

EXPL 18.34 −0.16 0.23 −0.20 1.70
ADI 19.93 −0.22 0.14 −0.23 1.30
ADOVI (w = 3) 20.37 −0.35 0.05 −0.27 1.08
IMPL 20.68 −0.29 0.13 −0.24 1.25
OVI (w = 1.5) 22.20 −0.31 0.11 −0.27 0.95
OVI (w = 3) 20.99 −0.60 −0.16 −0.33 0.75

Note. Different solution schemes of the ice-thickness equation for the transient northern hemisphere simulations
according to (18) are compared. Grid spacing is 80 km, maximum time steps of scheme EXPL (�t = 5 yr,
�̃t = 100 yr; see Table II) applied.

It is interesting to compare the EISMINT simulations for the 75-km grid with the northern-
hemisphere simulations for the similar 80-km grid. We have seen above that for the academic
EISMINT problem with the 75-km grid stability is no longer limited by the ice-thickness
equation, so that all schemes (except EXPL) can be run with the same time steps. By
contrast, the similar 80-km grid for the “real-world” northern-hemisphere problem with
uneven bedrock topography, isostasy, time-dependent boundary conditions and basal sliding
leads to a very strong dependence of numerical stability on the applied scheme for the ice-
thickness equation. Therefore, the stability of the numerical solution of the ice-thickness
equation is strongly affected by these real-world phenomena. Evidently, the thermodynamic
part is less sensitive; the thermodynamic time step for the EISMINT problem is only twice
as large (200 years) as the one for the northern-hemisphere problem (100 years).

In order to separate the impacts of different time steps and different numerical schemes
on accuracy, the northern-hemisphere simulations on the 80-km grid have been repeated
with fixed time steps �t = 5 year, �̃t = 100 year (which are the maximum time steps for
scheme EXPL). The resultant CPU times and relative errors are shown in Table III. The
former vary only by ca. 20% among the different schemes, which demonstrates in particular
the efficiency of the SOR solver for the very large and sparse SLEs of the schemes IMPL
and OVI. The latter are generally small due to the small time steps, except for some values
of r f always less than 1%. The errors rV and rH , which are most directly influenced by the
solution of the ice-thickness equation, increase in the order EXPL < ADI < IMPL < OVI
(w = 1.5) < ADOVI (w = 3) < OVI (w = 3), which reflects the decreasing accuracy of the
schemes. However, comparison with Table II shows that by far the larger part of the errors
arises from the increasing time steps if the stability limits of the several schemes are fully
made use of.

Re-running the simulation with the 80-km grid and the scheme OVI (w = 3) in the
polythermal mode allows maximum time steps of �t = 20 years, �̃t = 20 years, which
is five times smaller than in the cold-ice mode (Table II), in strong contrast to the above
findings for the EISMINT set-up where the maximum time steps remained unaffected. The
corresponding CPU time is 9.59 h, ca. 4.5 times the CPU time required for the cold-ice
mode. Apparently, the real-world problem de-stabilizes the polythermal mode to a much
larger extent than the cold-ice mode. Comparison with a run in the cold-ice mode and the
same settings [grid spacing 80 km, OVI (w = 3), �t = 20 years, �̃t = 20 years] shows
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again very similar results for the large-scale properties V , A, H , and f (differences <0.5%
for the LGM and <3% for the present), whereas the volumes of the near-basal temperate-ice
layer, which are of the order of 1% of the total ice volume, are larger by a factor 2.1 (LGM)
and 3.7 (present) in the cold-ice mode.

6. CONCLUSION

The stability and accuracy of a variety of numerical solution schemes for the ice-
thickness equation within the dynamic/thermodynamic ice-sheet model SICOPOLIS has
been investigated for two different problems, a simple axi-symmetric steady-state ice
sheet which rests on a flat bedrock (“EISMINT phase 2 simplified geometry experi-
ment”) and the time-dependent glaciation of the northern hemisphere from 250 kyr BP
over two climatic cycles until today. As expected, the stability increases in the order
EXPL < ADI < ADOVI < IMPL < OVI, maximum dynamic time steps �t varying by up
to a factor of 40 between the least and the most stable scheme. Correspondingly, CPU
times can be reduced by up to a factor of 15. For the simple EISMINT problem, this is not
accompanied by a significant decrease in accuracy, whereas for the “real-world” problem
of paleo-glaciation of the northern hemisphere, which includes an uneven bedrock topogra-
phy, isostasy, time-dependent boundary conditions, and basal sliding, the accuracy worsens
distinctly when OVI is applied; here IMPL is the best compromise between stability (short
computing time) and accuracy.

For the EISMINT problem, application of the polythermal mode has no effect on stability
in case of the OVI scheme, and produces distinctly less near-basal temperate ice while
leaving large-scale ice-sheet properties essentially unchanged. The latter holds also for
the northern-hemisphere problem, whereas in this case the stability of the OVI scheme is
significantly reduced.
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